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I - INTRODUCTION

In the paper "Counting Large Numbers of Events in Small registers®, Morris
[Mo 1978) proposed a probabilistic algorithm for keeping track of a large number
of events M with an n bit binary counter where typically M >> 2n—1 = largest
integer that can be represented by the counter, This method of counting has been
dubbed "Approximate counting® by Flajolet [Fl 1985] who reformulated the problem

in terms of a discrete time Markov chain b(t) with state space

+
1 = {Ov 10 21 }
and transition function given by
-1
P(b(t+1) = i+1 | b(t) = i) =2 ", {20 ,
(1.1)
-1
P(b(L+1) = i} b(t) = i) = 1-2 .
when one “counts"™ an event with
~b(t)
where

arises naturally

The process b(t)
probability 1-2 '

probability 2‘b(t') and does not record it wWith

h(t) = current count in Lhe register. How well does b{(t) track t ?

Qe
. ) cf'l.bg
Morris [Mo 1978] has noted that rp“';& “06-
Veato ‘\\m\'&‘
):9?":? pute
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a) E(2°(8)y o a2
p) 02(2°(Y)y = t(eer)s2

and Flajolet [F1 1985] has given a proof of (1.2).
Thus 2b(t)-2 is an unbiased estimator of t. In addition Flajolet has shown,
Theorem 1 of [F1 1985], that

(1.3) a,(t) s E(b(t)) - log, t s a,(t)
where ai(t) are small and bounded as t + =,

The proof of (1.3) given in [F1 1985] is not simple since it uses Mellin
transforms and other refined techniques from the theory of functions of a complex
variable. It is the purpose of this paper to derive (1.2) and (1.3) by means of a
more elementary method, at least more elementary to probabilists !, using only
the simplest ideas of the theory of martingales. See chapter VI of [Ka-Ta 1975]
for a more comprehensive account. More precisely, we shall prove that (1.3) holds

with

-1
a,(t) log, (2t + log2)

a,(t) = log, (1 + 2t_1).

5o(t)

In addition we derive a new recursive formula for E( ), L2 1.

Interestingﬁf( enough the same process b(t), but with b(1) = 0, occurs in a

recent paper by [GGMM 1985] where b(L) represents the back off counter occuring
in the exponential back off protocol (EBO) when the channel is always jammed ; in
fact, this is what first stimulated my interest in this problem - see [Ro 1984].
The problem here {3 to show that .

[T A-'J-’
. ~b{t) ) y

lim sup t E(? ) < -, 4 Availability Codes
t + o 1 -

. . - e m———————
Avan a.dfor
Speciat

W e -_'_. ., \..-q--\ N .-_'.l‘ . d

In fact the following result was proved in [GGMM 1985 ]
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(1.4) 178 s t (2 %)) <9, for a1l t 2 1.

By a simple martingale argument we are able to obtain the sharper lower

bound
¥
. (1.5) 1 st E(27P(Y))
\ and with a little more effort we are able to show
o -b
(1.6) e E2 %) s un, boza.
: In addition [GGMM 1985] conjectured that
: - -1
. (1.7) E(2 b(t)) ~ ¢t where ¢ = 1/log2.

In fact Flajolet has shown [Fl 1986] that (1.7) must be modified tbd take

into account bounded fluctuations w{t) of small amplitude i.e. he shows that

(1.8) e %y Lo v ().

The proof of (1.8) is, as is to be expected, quite delicate. Using only

. very simple tools we are able to prove the following weak form of conjecture
- (1.7}
; t-1
-b(s
a) 1lim sup I E(2 ( ))/log t s ¢
‘. t * o s=1
(1.9)
- t-1
. -b(s
. b) Llim inf L E(2 ( ))/log t 21,
t + o S=1

These results are obtained in part 3.

Acknowledgments : I wish to thank my colleagues F. Baccelli, G. Fayolle, P.

Flajolet and P. Robert here at INRIA for several helpful discussions. In

particular the proof of the lower bound (2.9) is due to P. Robert,
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II - A METHOD FOR CONSTRUCTING MARTINGALES ASSOCIATED WITH A MARKOV CHAIN

The following discussion assumes the reader is familiar with chapter VI of
Karlin-Taylor. Let y(t) be a Markov chain with countable state space
1" - (0, 1, 2, ...} and transition matrix P = (P(i,J)). Let F(t) = SBly(u),
0 $ u S t) denote the smallest g-field generated by the random variables y(u),
0 Sust. Intuitively él(t) {s the past up until time t. We recall the

Definition : we say that x(t) is a martingale with respect to (t)
if (1) x(t) is S (t) measurable
(2.1) (i1) E(| x(t)]) < = and

(1i1)  E(x(t+1) | FH(L)) = x(v).

In order to construct martingales associated with the Markov chain y(t) we

make use of the operators P and A acting on the function space

D={f] £:1 +R, £ P[] <=
§=0

Definition : Let £ € D

o

(i) Pe(i) A E P{i,j) £(J)
= 0
(2.2) (ii) Af(i) A PF(1) - £(i)

(iit)y  Plf] (1) 4 T P(i,9)|f] (3).
3=0

Note that E{f(y(t+1)) - £(y(t))| FF(0)) = E{f(y(t+1)) - £(y(t))| y(t)} = Af(y(t))

and using this fact it is easy to establish the following

Lemma : Suppose P} f] (i) < = and set
t-1
(2.3) x(t) = r(y(t)) - T Af(y(s)), t 2 1 and x(0) = f(y(0)).
3=0

Then {x(t), ii(t)] is a martingale.
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For future reference we note the following special case. Suppose Af(i) = ¢
all 1 2 0. Then f(y(t)) - ct is a martingale,

Lemma (2.3) yields a novel and computationally simple proof of Flajolet's

proposition 0 as well as a recursive formula for the higher moments of Zb(t).

Proposition :

(2.4 Let b(0) = 1. Then E(2

b(t) NI

) = t+2 and o?*( t(t+1})72.

Proof. We begin by noting that
(2.5) ar(y) = 273 [e(ge1) - (1.
L3
Let fl(j) =2~ where £ = 0, 1, 2, .... An easy calculation shows that

(2.6) At (3) = - ().

-1

In particular Af,(j) = 1 and therefore, by lemma (2.3), we have

-1
f,(b(t))y - ¢ 1 =
s=0

(),

is a martingale. Consequently

E(f,(b(t)) - t) = £,(b(0)) = £,(1) =2 1i.e.

o0(t)

(2.7) E(f,(b(t)) = E( ) = te2,

Lemma (2.3) and formula (2.6) can now be used to derive a recursive formula

tb(t)

for the moments E(2 }o & 2 2. To illustrate these ideas consider the case

L = 2. Since Af,(j) = 3f,(J) lemma (2.3) and (2.7) yield

t+l
E(F,(b(t)) - £ 3£,(b(s)) = £,(b(0)) = 4
3=0
>0
S T A T S B T S S T R R R N R SR NGRSO
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t-1 t-1
E(22%(Y)y L E(f,(b(t)) = 4+ 3 I E(f,(b(s)) =4 +3 I (s+2) =
3=0 s=0
-4+ 3, (t';)t + 6.t = % t(t+3) + 4,
Now
02(2°(F)) - B®Y)) - g(2®(%)yr L eeedy v ou - (reye - HED
Using (2.3) we can give a recurrence formula for the higther moments of
2b(t). More precisely let Ml(t) - E(2£b(t)), L =0,1, ... . Then lemma (2.3) and

(2.6) yield

% e t-1
(2.8) M (E) = 27+ (27-1) = M, (3).

Note. We believe formula (2.8) to be new.

The formula E(2 t+2 together with Jensen's inequality applied to the

concave function ¢(t) = log,t yield

E(b(t)) S log,(t+2) = log,t + log(1+2t ).

b(t)

We now proceed to derive a lower bound for E(2 ) using an argument

suggested to the author by P. Robert (INRIA).

An easy calcuulation shows that

-b(t)

E(b{(t+1) - b(t)) = E(2 ) 2 2‘E(b(t))

and therefore

2E(b(t)) . E(b(t+1) - b(t)) 2 1.
Thus
t-1
g 2B e iy < b)) 2o,
3=0

J T T U A N T R I L S L P LT st S St R
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Set ¢(s) = E(b(s)) ; so ¢(0) = 1. The preceeding expression can be rewritten as

t-1
I 2
s=0

$(3) (4(se1) - o(s)) 2 t.

On the other hand

t-
ts L
s=0

L6(t)

1 ¢(t)
2@(3) [¢(s*+1) - 4(s)] s J 2%4s = e(1082)¢(t) - elogz)/logZ i.e.
1

2 2+ (log2).t
and this implies
- -1
E(b(t)) = ¢(t) 2 log, (tl[log2 + 2t ]]) = log,t + log, [log2 + 2t ]J.

Summing up then we're shown that

- -1
L2090 log,t + log,(2t T log2) s E(b(t)) s log,t + log,(1 + 2t ).
E
Clearly this implies lim -%Ei&ll = 1 and also that
tLro ngt
(2.10) log,(log2) s E(b(t)) - log,t s 1/t.

-b(t)

IIT - AN IMPROVED ESTIMATE FOR E(2 )

In this part of the paper we assume b(1) = 0 and repeating the same

argument of proposition (2.4) we see that

t-1
f.(b(t)) - £ Af,(b(s))
s=1
is a martingale with
t-1
E(f,(b(t)) - ¢ Af,(b(s)) = £ (b(1)) = 1.
3=
b(t) . . . -1
Consequently E(2 Y = t. We now apply Jensen's inequality with $(x) = x to

deduce the much sharper lower bound
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(3.1) e ®(M)y 2 4/,
»: To obtain the upper bound
!'
" -b(t)

(3.2) E(2 ) S 4.1/t.
_: We derive an exponential bound on the first passage time
X Ty = inf{t : b(t) 2y}. This leads to a sharper estimate than the one obtained by
. [GGMM 1985] who used Chebychev's inequality ; otherwise the twc proofs are the
3 same.
N ~y-1
. Lemma : For any A S A(y) = - log(1 - 2 )
\ (3.3) y-1 L
2 P(Ty 2 t) Sexp(-at+x) nm (1 - (1 - exp(-a))27) .
: =1
) Proof. Let y, be the random variable with geometric distribution given by

-1 -i.J

P(yi=J) =2 (1-2 )J , J 2 1. Thus its moment generating function
- Xyi i,-1
5 E(e ) = (1 - (1 - exp(-r))2 ) .

Clearly 1, = 1 and for y > 1 we have |

\ y-1
: 1 = 1 + Z yi'
2 y i=1

Since the yi. 1 $1 35 y-1, are mutually independant we see at once that
N : y-1
N My(x) = E(exp(a ry)) = exp(A) N E(exp(a yi))
A i=1

y- i -

‘ = exp(x) 11 (1 - (1 - exp(-A))2 ) .
4 i=1
)
! By Chebychev's inequality exp(at) P(ry 2 t) s My(A) which i3 precisely

lemma (3.3). Note that a sufficient condition for
C: . i
N My(x) < ® isg  sup 2°(1 - exp(-1)) < 1.
~ 1sisy1
..
5
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In particular if we set A = A(y) where
(3.4) A(y) = - log(1 - 27%)
then My(x) < = for A § A(y) and
(3.5) log(1 - (1 - exp(-A))2") 2 - (1og2)(1 - exp(-a))2",
where we' ve used the inequality
log(1-x) 2 -(log2)x on 0 € x S %.

Our next step is to set A = A(y) in lemma (3.3) and then take the log of
both sides which leads to

y-1i

log P(r, 2 t) § “A(y)(£-1) + (log2) 2ty

N~

i=1

s -ay)t + (log2)(1 - 2 ¥y + a(y).

Consequently
P(Ty 2 t) s cly) exp(-x(y)t)
where
-y . .3/2
c(y) = exp{aly) + (log2)(1 - 2 ")} s 2 , y 21
We have thus derived the exponential bound
/2
(3.6) P(r, 2 ) § 232 exp(-1(y)t).
. ., .b(t) -
We now proceed to  estimate E(2 ). Set m = [log,t] so

(log,t)-1 < m Slog,t, consequently
E(2 ; b(t) 2. m) £ 2/¢,

Here E(f ; A) means integrating f over the subset A, So the problem row is
to show that

- St C i P I S e SR S A, it S e S S S SRS ST e AP S L A )
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E2 (8 { bty sm-1) s ast
.
\ and to estimate the constant a. Now
N
v m-1 s
(3.7) E2 ) o) smen s 1 27 pece) s ).
. j=0
A But
3/2
. P(b(t) S J) = P(rJ 2t) s2 exp(~r(j)t)
} and
) S N
A(J) = + log(1l - 2 7)) § -2
- together imply
. , )
> P(b(t) s J) s 23 2 . exp(- 2 Jt)
- , _
< 23 2 exp(- 2" j).
E The right hand side of (3.7) is bounded by the sum
- m-1 . -1
. S, = I 2Jexp(-2 Jy.
: 3=0
- . m- j N
N Since - 2 s - (m-j)2 it follows that
~ m-1 . m-1
/2 - -
S, s 23 I 2 J[exp(—Z)]m b . 23/2 exp(-2m) ¢ {exg(Z)}j
J=0 J=0
/ A -
< (232 /7 (ezr2)-11) 2™ s ert
where
. /
" a= 22’2/ [(e?/2)-1] = 2.0993859.
% Finally, putting these estimates together we obtain
o -b(t)
- (3.8) E(2 ( ) S 4.0993859 / t.
ALY RN \ AR r.'{-' NN ‘) A A N AT R AV

-'_'/,'-'E‘b‘I




We conclude this part of the paper by establishing a weak form of the

conjecture (1.7). More precisely set m(t) = E(2—b(t)) and apply lemma (2.3) to
the function f(j) = j. Since Af(J) = Z—J we see at once that

t-1
E(t) - ¢ 228y g
s=1

and therefore

1 -b(s)
(3.9) I E(2 ) = E(b(t)) s log,(t+2) = log(t+2) / log2.

s=1

~b(t) . . .
On the other hand as we've already seen E(2 ) 2 1/t which implies
t-1 t-1 t-1
-b

(3.10) g E(2 (S)) 2 L /s a1+ ¢ gé =1 + log(t-1).

s=1 s=1 1

Combining (3.9) and (3.10) yields

t=1
r (2008,
(a) 1i 5=l < 1/10g2
a ém*s:p Tog t og
(3.11) ‘o1 o)
r E(2 '%)
5=
L N
(b) lim inf Tog © 21
t + =
t-1
-b -, -
Note that if in fact E(2 ( ) c/s then § E(2 b(s)) ~ ¢ log t. This is
s=1

why we call (3.11) the weak form of conjecture (1.7).

IV - AN ESTIMATFE FOR THE TAIL OF THE DISTRIBUTION

22b(t) 4

Using the result that E( ) = 5+ (3/72) t(t+3) and Chebychov's

inequality it is ecasy to see that

(h.1) P(b(L) 2 2 log, L + &) = 0Of




In fact

b+ (3/2)t(t+3)

P(b(t) 2 2 log, t+6§) = P{ 5
2 .

where ¢, is independent of 6§ and t. This is in fact a considerable strengthening

of Flajolet's proposition 4 wherein he shows that

99

P(b(t) = 2log,t + &) = o(2 8¢ 799y,

uniformly in ¢t and § 2 O.

............
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